{"created":"2024-03-11T03:16:36.281440+00:00","id":2000191,"links":{},"metadata":{"_buckets":{"deposit":"d96cece5-98dc-4b08-9949-e90d439888dc"},"_deposit":{"created_by":9,"id":"2000191","owner":"9","owners":[9],"pid":{"revision_id":0,"type":"depid","value":"2000191"},"status":"published"},"_oai":{"id":"oai:paz.repo.nii.ac.jp:02000191","sets":["1706683556870:1706683678014:1710124260056"]},"author_link":[],"item_10002_alternative_title_1":{"attribute_name":"その他(別言語等)のタイトル","attribute_value_mlt":[{"subitem_alternative_title":"Image Quality Analysis for Digital Radiography Using the Autocorrelation Matrix","subitem_alternative_title_language":"en"}]},"item_10002_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2021-03","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"26","bibliographicPageEnd":"28","bibliographicPageStart":"19","bibliographic_titles":[{"bibliographic_title":"群馬パース大学紀要"}]}]},"item_10002_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"臨床で使用されている非線形な過程を含む画像処理技術にはユーザーにとってブラックボックス的な側面があり、従来の評価法ではその特性を正確に評価することが困難な場合が多い。本研究では、この問題を解決するために自己相関行列を用いた画質解析手法の意義を明らかにすることを目的として、新たな解析手法を提案し、どのような評価結果を導き出すのかシミュレーションを用いて検証した。画像に含まれるボケやノイズなどの画質因子が既知であるシミュレーション画像を作成し、この画像に対して自己相関行列による解析を行った結果、この手法によって得られる評価値はアナログ成分のボケを反映していることがわかった。本研究により、自己相関行列を用いた解析結果は画像処理に起因する周波数特性の変化を表していることが明らかになり、従来の評価法のような制約が少なく、簡便に画質解析が行えることがわかった。","subitem_description_language":"ja","subitem_description_type":"Abstract"},{"subitem_description":"Recently, several image processing techniques, including non-linear processes, are applied in clinical practices. It has been reported that these techniques are useful for diagnosis, and they possess black-box aspect for users. Although it is necessary to accurately determine these characteristics to identify features of resulting images, it is often difficult using conventional evaluation methods. To address this problem, this study examines the advantages of an image quality analysis technique that uses an autocorrelation matrix. In this study, we proposed a new analysis method, and simulation was used to verify the evaluation results. Simulation images with known unsharpness components and noise factors were created, and the images were analyzed using an autocorrelation matrix. From the validation using simulation, it was observed that the evaluation value from our method depicts the unsharpness due to the analog component. In addition, we could interpret the result similar to conventional techniques by analyzing the relative relationship of the frequency characteristics. It is to be noted that the new analysis method using the autocorrelation matrix well represented the change of the frequency characteristic caused by the image processing. Additionally, the proposed method is advantageous because the image quality analysis could be performed with fewer restrictions compared to the conventional methods.","subitem_description_language":"en","subitem_description_type":"Abstract"}]},"item_10002_description_6":{"attribute_name":"内容記述","attribute_value_mlt":[{"subitem_description":"原著論文","subitem_description_type":"Other"}]},"item_10002_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"群馬パース大学"}]},"item_10002_source_id_11":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA12090888","subitem_source_identifier_type":"NCID"}]},"item_10002_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1880-2923","subitem_source_identifier_type":"ISSN"}]},"item_10002_version_type_20":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_access_right":{"attribute_name":"アクセス権","attribute_value_mlt":[{"subitem_access_right":"open access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_abf2"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorAlternatives":[{"creatorAlternative":"MARUYAMA, Sho","creatorAlternativeLang":"en"}],"creatorNames":[{"creatorName":"丸山, 星"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_access","date":[{"dateType":"Available","dateValue":"2024-03-11"}],"filename":"PAZ26-03.pdf","filesize":[{"value":"2.6 MB"}],"format":"application/pdf","url":{"url":"https://paz.repo.nii.ac.jp/record/2000191/files/PAZ26-03.pdf"},"version_id":"cc6302e1-e101-4310-b191-99dec1895871"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"画像評価","subitem_subject_language":"ja","subitem_subject_scheme":"Other"},{"subitem_subject":"シミュレーション","subitem_subject_language":"ja","subitem_subject_scheme":"Other"},{"subitem_subject":"MTF","subitem_subject_language":"ja","subitem_subject_scheme":"Other"},{"subitem_subject":"ディジタルX線画像","subitem_subject_language":"ja","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"ディジタルX線画像における自己相関行列を用いた画質解析","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"ディジタルX線画像における自己相関行列を用いた画質解析","subitem_title_language":"ja"}]},"item_type_id":"40004","owner":"9","path":["1710124260056"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2024-03-11"},"publish_date":"2024-03-11","publish_status":"0","recid":"2000191","relation_version_is_last":true,"title":["ディジタルX線画像における自己相関行列を用いた画質解析"],"weko_creator_id":"9","weko_shared_id":-1},"updated":"2024-03-11T03:28:45.464424+00:00"}